IAC-06- E1.1.02

Education Programs using Small Aerospace Systems

Kenji Ogimoto

Leader, Space Club Kansai, Japan V21gifu@yahoo.co.jp

Akio Naemura

CEO, UNICS Co. Ltd, Japan

<u>nae@unics.co.jp</u> Shinichi Moriyama

School Master. TOIN High School, Japan info@osakatoin.ed.jp

Masanori Shimoda

Chief Officer of General Affairs, Space Club Kansai, Japan shimoda26@yahoo.co.jp

ABSTRACT

Several Space Clubs in Japan are planning to build small experiment rockets for education purposes. Space Club-Kansai is one of these clubs organized among university students and young engineers in private companies. This is an excellent mix to build small space systems such as small experiment rockets.

The first author started this kind of education nearly 15 years ago with some simple water rockets. They now emerged into High-Tech Water Rockets, Small Experiment Rockets, and Small Quasi-Satellites.

The paper describes the way how these programs evolved and their effects, and the system on which Space Club-Kansai is now working. Furthermore the authors discuss the possibilities of future development of these programs, which includes small satellites on orbit. Although these systems fly up to only 1 Km in the air at present, yet they give essential ideas of flying robots.

Space Club-Gifu flew the two stage rocket with one quasi-sat on board (July 2005), and Space Club Kansai flew a single stage rocket with two quasi-satellites on board (July 2006).

1.Introduction

The first small experiment rocket of Young Astronauts Club of Japan (YAC-J) came to France in 1992, when it was ISY(International Space Year). Since then, the authors have realized that these small systems together with other small flying robots such as High-Tech Water Rockets and a small unmanned aerial vehicle are suitable to educate young college students and engineers, especially system engineers (Ref.1). Furthermore, the way the launching campaign is held by Planete Sciences & CNES of France has presented a good example of encouraging creative young students and engineers to invent their own system concept. After YAC-J, the first author organized Space Club Gifu, in which he proposed the two stage rocket with a quasi satellite (UCG-05 Rocket). It flew in July, 2005 in La Courtine (Ref.2).

In the same year, Space Club Kansai was formed, and the single stage rocket (UCK-06) with two quasi satellites became under development. This paper describes UCK-06 rocket and their future development as a education tool. The launch was made at 17:43 of July 29th as shown in Fig.1.

Fig.1 Launch of UCK-06 Rocket in La Courtine

2. Intent of the Education Programs

In 1992, these programs were to stimulate young leaders in the Kakamigaha Chapter of YAC-J. The first author found that the rockets now prepared in several Space Clubs were the adequate bridge between elementary water rockets and actual space projects. For university students and young engineers, water propelled rockets are fun to feel propulsion systems and the Newton's dynamics (i.e. Action-Reaction). However, water rockets has much more potentials if it's connected to microelectronics such as sensors and microcomputers. These rockets are called as High-Tech Water Rockets. The High-Tech Water Rockets then lead to Small Experiment Rockets such as UCG-05 and UCK-06.

Major intent of this kind of programs is ;

'To stimulate young leaders and engineers for the long lasting activities of the clubs, and to lead them either to real space projects or flying robots.'

And they have the following potentials;

1) Give young people the feel with space related technologies. 2) Give young people

the feel with basics of rocket propulsion. 3) Create their own missions. 4) Manage a small system on their own. 5) Give young people the feel with microcomputers and sensors. 6) Communicate with people from different parts of the world.

Above all, these programs offer the opportunity for participants to stimulate creative minds, not the ability to follow some one else's rules.

3. Rocket Launcher Programs

3.1 Upgrading Levels

Small educational rocket programs may be divided into several different levels of skills, starting with a simple water rocket.

First Step (Initial Level)

·Elementary Level Water Rockets

- -With Pressurized Water Propellant
- -With Various Configurations
- -Flight Altitude less than 100 meters
- -Launched Easily and Frequently & Safe Second Step (Middle Level)

·Higher Level Water Rockets (Hi-Tech Water Rockets)

- -With Various Payloads
- -With Pressurized Water Propellant
- -With Micro-Computers and Various Sensors
- -Flight Altitude up to 100 meters
- -Launched Frequently & Safe
- Third Step (High Level)
- Creative Missions for Small Experiment Rockets
 - -With Quasi-Satellites on board

-With Solid Rocket Motors, Micro-Computers and Sensors

-Flight Altitude up to 1 Km

Final Step (Ultimate Goal)

Rockets reach Space with the altitude of more than 100 Km

-Small active satellites

-The Mix of Small rockets, Small satellites and On-Orbit-Servicing Technologies

3.2 High-Tech Water Rockets

Simple water rockets will not be discussed, since they are fairly common in many countries. The discussions will be started with High-Tech Water Rockets, in which the system is a little more complicated with microcomputers, sensors and simple mechanisms on board, than elementary water rockets. Working on these systems will lead students to higher system architectures and to a higher level of knowledge. They may even conceive various payloads controlled by a microcomputer. The electronic components may not be heavier than a few 100 grams. An example with a speed meter of a pressure sensor type with a microcomputer is shown in Fig.2.

Fig.2 An Example of High Tech Water Rocket

Several other types of High-Tech Water Rockets can be conceived. Still the full potentials of this type have not been fully developed. Space Club Kansai is working on various types of this kind.

3.3 Small Experiment Rockets

These rockets are just in the doorway to real space programs, namely each team plans what they would like to and what they should do to realize their plan whatever their plan might be. Japanese team initiated this program with the support from ANSTJ (former Planete Sciences) as shown in Fig.3.

Fig.3 <u>Small Experiment Rockets in 1992</u> and 1997 in France

Then, the CEES Rocket has been invented by the team in Kansai area of Japan, in which Liquid Nitrogen and Hot Water have been used as propellants. In the same year, UCG-05 Rocket was launched by Space Club Gifu in La Courtine. These rockets are shown in Fig.4.

Finally UCK-06 Rocket has been launched (Fig.1) by Space Club Kansai in 2006. This rocket was the first one built by Space Club Kansai. It was a single stage and had two quasi- satellites on board (Fig.5).

Fig.4 Small Experiment Rockets in 2005

It had more than 10 microcomputers (PIC16F877As), and each computer had a simple job such as a timer, a A/D converter, and a servo motor driver. The authors found this architecture has a good expansion capability as a building block and can be maintained easily since the computer board is small and standardized.

Unfortunately, it flew for only approximately 2.4 seconds after lift -off. Then it disintegrated when it suffered the deceleration g of the motor cut-off. However, the flight gave many valuable data to be transferred to the year of 2007.

Fig.5 Assembly Work of UCK-06 Rocket

In UCK-06 program, two separate groups worked on their satellites. One of them is the group of college students (KSE-Sat), and the other high school students (TOIN-Sat). The latter formed a new team in their school (Fig.6), and will study rocket & satellite technologies This scheme was the first try in Space Club Kansai, and will be kept in that way as long as the basic design of UCK-06 is followed. Two or three satellites will be on board in the successor of UCK-06.

Fig.6 Members of TOIN Rocket Club

One of the two quasi-satellites were ejected from the rocket and landed on the land close to the launcher (Fig.7). Although its parachute was not successfully deployed, still the digital camera on board the satellite was functioning after the flight.

Fig.7 Quasi-Satellite after the Flight

Space Club Kansai will work on the same system again to complete the system. All the necessary considerations and redesigns are under way for the next year. This rocket and the fundamental functions of quasi-satellites will be well defined in 1 or 2 years. To verify the components, High -Tech Water Rockets will be used, if the component is not heavy.

4. International Exchange Programs

Planete Sciences and CNES of France gave Space Club Kansai the chance to join the launching campaign. In return, Space Club Kansai has sent the automatic launching equipment for water rockets. Beside this, YAC-J, Space Club Gifu, and Space Club Kansai, all had close relation with La Reunion. Especially, Space Club Kansai is discussing the possibility of development of one satellite with a French high school of La Reunion in 2007 (Fig.8). The both parties agreed to have a joint program the next year. UCK-06 rocket has the convenient architecture to have the exchange programs. Quasi-satellites are one and the distributed small computers are another. Probably a Reunion-Sat will be on board on UCK-06A in 2007. The most of the UCK-06 Rocket configulation will be retained for the following years. Other interested parties will be able to participate in UCK-06 system by supplying either a quasi-satellite or a sensor.

Fig.8 The Team from La Reunion

5. Future Scope

This education program includes three major areas, namely launchers, guasi-satellites and international exchanges. In the launcher area, Space Club Kansai is working on the Small Experimnt Rocket (UCK-06 Rocket). This rocket had two small quasi-satellite sysutems on board. Although UCK-06 Rocket and its quasi-satellites are still in its infantry. this system has the growth capability in the architecture. Namely each microcomputer deals with single function as described earlier, and new sensors or driving mechanisms can be easily incorporated in the sytsem. Furthermore, separate groups will be able to work on their own quasi-satellite or sennsors with different missions.

As to the international exchange, there has been continuing exchange with France and lle de La Reunion for quite some time. Space Club Kansai has the intension to keep this relation even in the rocket project itself. As disscussed above, UCK-06 system fits into these exchange programs. Some subsystems may be worked in the different part of the world and then assembled together at launch site.

Finally, these Small Experiment Rocket and Quasi-Satellites has the growth capability toward a system on orbit. As to the transportation, a small two-stage-to-orbit (TSTO) vehicle would be the choice, and quasi-satellites will be modified to small satellites by using space qualified parts. Of course more analytical work will be required. Then these satellites will be combined with On-Orbit Servicing Technologies (such as assembly robots technologies). In this manner, the affordable, reconfigurable, and reliable system on orbit will be realized. It is specially true if the advance of microelectronics is incorparated.

6. Conclusions

Space Club Kansai has just launched Small Experiment Rocket (UCK-06). In July 2006. Although the club could not complete the system, all the necessary information to renew the system was obtained. The rocket has a growth capability to accept international exchanges, and to prepare for future systems on orbit, if it is combined with On-Orbit Servicing Technologies. Space Club Kansai will keep on going to complete the system.

Acknowledgements

This is the third paper of the first author, and covers his activities over last 15 years. During this period, many people and organizations supported this endeavor. They are; Ms. Tomoko. Akiha of YAC-J, Mr. Guy Pignolet of CNES, Mr. Marc Zirnheld of Planete Sciences, Mr. Christophe Sicluna of Planete Sciences, Mr. Nicolas Chaleroux of Planete Sciences, and other people from Planete Sciences and CNES. My family, Kuniko, Kenichiro and Takako also supported him in many ways. The authors would like express their sincere gratitude to all these people.

References

1.Kenji Ogimoto and et al

'Education Program in Kakamigahara Chapter of Young Astronauts Club-Japan ' ISTS2004-u-05, International Symposium on Space Technology and Science, Miyazaki, Japan May 30-June 6, 2004

2. Minoru Sasaki, Kenji Ogimoto and et al 'Experimental rocket project in Gifu for launching within a campaign organized by French association Planete Sciences in La Courtine' ISTS2006-u-04, International Symposium on Space Technology and Science, Kanazawa, Japan June 04-June 11, 2006

UCK-06 ROCKET PROJECT

(Quick Review Report)

- 1 . Concept Summary
- 2 . System Description
 - 2 1 Major Architecture
 - 2 2 Weight Summary
 - 2 3 CG Positions
 - 2 4 Functional Block
 - 2 5 Flight Sequence
 - 2 6 Quasi-Satellites
- **3** . Team Members
- $4 \ . \ Schedule$
- 5 . What happened to UCK-06 Rocket

August 18. 2006

Uchu Club-Kansai (UCK)

UCK-06 Rocket Space Club Kansai Launched on July 29th, 17:43 La Courtime, France

1 . <u>Concept Summary</u>

1) <u>Name</u>) <u>Name</u> : UCK-06 Rocket, The Single Stage Reusable Rocket by Uchu Club-Kansai							
		(UCK : The Abbreviation of Uchu Club - Kansai)						
) <u>Purpose</u> : Education of Young Space System Engineers								
		Familiarization of Robot System Engineering						
		International Exchange with French Counterparts						
3) <u>Launch Date</u>	:	22-30 July, 2006, Launching – July 29, 2006 17:43						
4) <u>Launch Site</u>	:	La Courtine, France						
5) <u>Team Members</u>	:	Students, Young Engineers, Entrepreneur and university staff in Kansai Area						
6) <u>System Architectu</u>	<u>ure</u>	: Single Stage Rocket (Approx. 12 Kg including the rocket motor、 Reusable)						
Quasi Satellites ((2 un	its- 0.5 Kg each, Precursor for small satellites which will be launched to the space in the						
		future)						
Sensors (Video, I	Digita	l Camera, Speed meter, Accelerometer, Attitude Monitor etc)						
On-board Comput	ters (Supervised Control by a main computer, Distributed small computers)						

UCK-06 ROCKET Configuration

Flight Trajectory : Altitude, Velocity & Acceleration vs Time

Items		Description						
Rc	Size	150 × 1500mmL, Maximum Dimension 510						
ocket	Weight	7Kg + 3.7Kg (Propulsion Chamois)						
ť	Max. Altitude	Approx. 800m						
	System	Single Stage, Equipment Unit, Distributed Computers, Satellite Deployment						
Qı	Size	$90 \times 90 \times 90$ mm						
Jas	Weight	Approx. 0.5 Kg x 2						
SS-1	Function	Monitoring Vegetation, Landing on a planet, Landscape Measurement, Small						
It		Robots etc						
Se	Video	Monitoring the deployment of Quasi-Sats & the status of the rocket						
nsc	Digital Camera	Status of the rocket						
rs	Speed Meter	Utilizing the pressure sensors						
	Acceleration	Monitoring the flight conditions						
	Attitude Mon.	Preliminary measurement of rocket attitudes						
Computers		Distributed Control by a main & small computers						
		Standard Architecture						

UCK-06 Rocket Major Characteristics

2 . System Description

2 - 1 Major Architecture

	Items	Description		Items	Description
Fu	Structure	4-1/4 1mmt Aluminum shell	Cc	Tx / Antenna	None
ısel	Fins	4-Plywood + aluminum skin 0.1mmt	nm	Rx / Antenna	Localizer
age	Motor Mount	MC Nylon 2ea	nun		
	Equip. Inst.	MC Nylon 4ea	lica		
	Nose	GFRP Wood, Bolt, weight 3.7 Kg			
	Dummy Motor				
			Pc	Battery	NiCd
Comp	Туре	Distributed PIC16F877As			
	Main				
ute	Sub	PIC16F877As			
r			Qu	Size	Less than 90 x 90 x 90mm
Se	Speed Meter	Utilizing pressure sensors	lasi	Weight	0.5Kg x 2 ea
ense	Acc Meter	Up to 10Gs 1 ea 1 ea		(TOIN Sat)	Digital Camera
rs	Video				
	Digital Camera			(KSE Sat)	Video Camera、GPS Receiver
	Att. Monitor	1 ea, linear CCD			

2 - 2 Weight Summary		2006/07/19
Items	Weight(g)	Description
Quasi-Sat	1000	90x90x90mm 2 ea, 0.5Kg ea
Satellite Deployment System	100	Mechanism driven by a motor
Nose	540	150x150 GFRP1mmt
Structure	1500	1350x150 4 aluminum shells, 1mmt
Fins	600	250x (400 + 250) aluminum 2mmt 4 ea
Parachute	1250	
Parachute Door	50	
Parachute Installation	120	
Parachute Door Motor	50	
Rocket Motor	3700	Chamois empty weight 2700g
Rocket Motor Mount	120	
Rocket Motor Fairing	70	
Equipment Installation	330	3 ea
Video Camera	200	Che-ez! Moviex III 3.2M Pixcels
Digital Camera	200	AVOX PRM-300EB
Computers	600	Main George 300MHz, PIC16F877s
Wiring	300	
Main Battery	300	
Fasteners	300	
(Total Weight)	11330	Target: Max14000g (2670g allowance)

2 - 3 CG Positions

Items	Weight(g)	X Position (cm)	Sum (g · cm)	
Quasi-Sat	1000	115, 125	120000	
Satellite Deployment System	500	117.5	58750	47000
Nose	540	140	75600	
Structure	1500	68	102000	
Fins	600	10	6000	
Parachute	1250	60	75000	
Parachute Door	50	60	3000	
Parachute Installation	120	30	3600	
Parachute Door Motor	50	30	1500	
Rocket Motor	3700	18	66600	
Rocket Motor Mount	120	35	19425	
Rocket Motor Fairing	70	0	0	
Equipment Installation	330	70	23100	
Video Camera	200	85	17000	
Digital Camera	200	85	17000	
Computers	600	80	48000	
Wiring	300	50	15000	
Main Battery	300	85	25500	
Fasteners	300	50	15000	
(Total Weight)	11730		692075	Sum/W = 59.0cm

Ref: The base of the rocket

2 - 6 Flight Sequence

(Basics)

- The first priority is to recover safely the rocket itself. Therefore the parachute for the rocket will be deployed when the speed of the rocket is nearly zero.
- The second satellite (KSE Sat) will be deployed 2 seconds earlier than the deployment of the rocket parachute.

• The first satellite (TOIN Sat) will be deployed 2second earlier than the deployment of the second satellite. This satellite deploys its own parachute 1 seconds after the separation from the rocket to avoid the collision with the rocket.

 \cdot The satellite bay door will be opened 8 second after the lift-off.

(The sequence is very critical and it may be changed)

	(Time)	(Altitude)	(Speed)
1 . Lift-Off	0 Seconds	0 meter	0 meter / second
2 . Satellite bay Door Open	8	650	6 0
3 . No.1 Satellite (TOIN Sat) Deployment	nt 9	700	4 0
4 . No.2 Satellite (KSE Sat) Deployment	t 11	800	2 0
5 . Rocket Parachute Door Open	13	850	0

TOIN-Sat

Major Specifications;

- Size 90 x 90 x 90 mm
- Weight approx. 500 grams
- Mission Digital Camera, Music Localizer

Block-diagram

KSE-Sat

Major Specifications :

- Size 90 x 90 x 90 mm
- Weight approx. 500 grams
- Mission Video Camera, GPS receiver

<u>Weight Summary</u>	Parachute	43 grams
(494 grams)	Video Camera	36
	GPS Receiver	35
	PIC	22
	Power Supply	17
	Battery	75
	Structures & Fasteners	266

3 . Team Members

<u>Space Club-Kansai</u>	
<u>Program Organizer</u>	Professor Okubo, Osaka Prefecture University
<u>Advisors</u>	Professor Azuma, Professor Marutani, Ms. Ikeda
<u>Project Leader</u>	Dr. Ogimoto
Organizing Members	Mr. Naemura, (French Mission Leader)
	Mr. Shimoda, Mr. Wakabayashi
<u>Cultural Exchange Group</u>	TBD
	Student Union (KSE)
Engineering Group	
System Design	Mr. Sugii (CPU)
	Mr. Mineyama (CPU)
Quasi-Satellites	Mr. Mizuno (Toin)
	Mr. Shiokawa (KSE , Quasi-Satellites), Mr. Ikema (KSE)
	Ms. Saito (KSE), Mr. Ishikawa (KSE), Mr. Minematsu (KSE)
Equipment	Mr. Sakata (Mechanism)
	TBD (Communication)

NB) Toin = Toin Senior & Junior High School

KSE = Kansai Space Explorers, Student Union

4 . <u>Schedule</u>

Items		FY 2005						FY 2006			Suppl.		
	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	
Planning													
Kick-Off													
Organization			•										
Mock-Up													
Quasi-Sat													
Computers										•			
Sensors													
Communication													
System Tests													
Travel to France													
									Tec	h. Revie	ew L	aunch 07/29	17:43

Development Schedule

5. What Happened to UCK-06 Rocket & Related Recommendations

5.1 Flight Analysis

1) UCK-06 Rocket has been launched Properly, at 17:43 of July 29, 2006 (July 30, 0:43 Japan Time). However, there are scratches on the leading edges of 3 fins, approximately at the same locations. It was suspected that the rocket fins touched the launching tower. Furthermore it may have caused its destruction in the air.

- 2) 2 seconds after the lift-off, the break-up occurred.
- 3) The break-up occurred at the altitude of approx. 100m. The break –up components are Nose (including satellite compartment), Main Body, Fins, Door for the Parachute and etc. Nose and Main Body continued to climb up to several hundreds meters.
- 4) After several seconds, Main Body was coming down with the parachute not fully deployed. Doors and other small parts were seen to fall.
- 5) Digital Camera & Video Camera received the shock at the lift-off and possibly became inoperative. The accelerometer & the speed meter (pressure sensors) were cut-off from the power supply 2 seconds after the lift-off.
- 6) It was suspected from the deformed shape of the fins that the flutter (aerodynamic vibration) of 4 fins (made of 2mm thick aluminum plates) deformed the main body and separated from the body 2 seconds after the lift-off. Furthermore the body suffered the great force at this moment, and most probably the electronics were destroyed at the same moment. The estimated speed was approx. 90 meter /sec.
- 7) As to the 2 Quasi-Satellites, TOIN Sat has been deployed safely and touched down on the near-by ground of the launcher with its digital camera working, and KSE-Sat was possibly destroyed by the collision with Main Body just after the ejection.

5.2 Recommendations

- 1) As a whole, the structure and mechanism were rather premature.
- 2) The doublers should be adopted to the opening of the satellite compartment & the parachute bay. Furthermore the structure between the bays should be reconsidered.
- 3) The mechanisms (especially door latches) should be packed in an unit, and the movement of the element is expected to be in the plane perpendicular to the thrust axis (to resist the forces at lift-off & cut-off of the thrust). Although the deployment of the Quasi-Sats was performed properly, the direction of the deployment should be paid attention (not in line with fins) and the size of the opening should be as small as possible.
- 4) The installation of electronic equipment had not posed problems if the flutter had not occurred. However, generally speaking, more cautions should have been paid to shock and acceleration (launch environments).
- 5) The wiring was not properly done this time because of the premature designs and the lack of time. Wirings and connectors should be securely attached to the wall.
- 6) It was recommended that each bay should have the separate power supply to avoid the power failure. Sensors should be redundant if the mass budget is allowed.
- 7) The material of the parachute should be something like silk, instead of synthetic. Its method of deployment should be reconsidered.
- 8) The fins should have shorter spans and longer cord length, and have high rigidity. It was recommended that material with high rigidity & high damping (structural damping) should be used, such as plywood. Simple aluminum plates are the worst choice.

UCK-06 Rocket Project Summary

1.<u>Date</u> : 2006/07/22 (Sat.) - 08/02 (Tue.) Launch - 7/29 (Sat.) 17:43 in France 7/30 (Sun.) 00:43 in Japan 2.<u>Site</u> : La Courtine, France 3.<u>Team Member</u> : Core Team 4 persons

> Lycee TOIN 8 (7/26-8/02) KSE 3 Supporters 8 (7/26-8/02) Total 23 members

4. Achievements

- The Quasi-Sats have been deployed after 400-500m of flight. The system will be improved in the following years.
- 2) The team (including engineering, manufacturing, & management) was created in a very short time span.
- 3) The presence of Kansai & Osaka TOIN has been demonstrated in the campaign through the cultural exchange with France.

It was decided to have the joint program with the members of La Reunion next year.

- 4) The most parts of the rocket have been recovered, and the details of the flight will be examined.
- 5) Above all, all the members had the great experience and returned safely
- 6) We are at the point to start working continuously on UCK-06 Rocket, and to join the campaign regularly.

5.<u>Photos</u> :

(UCK-06Rocket) (Chris-san in Osaka)

(Before Launch)

(Fitting to the Launcher)

(Install the Igniter)

(Lift-Off)

Operation Procedures

No.	Time Line	Category		Items	Time required	Operator
1	H-433	Preparation	Functional test	60min	ALL	
2	H-373	(Camp)	Prepare satellites,tools	, and batteries	60min	ALL
3				Digital camera		
4	H-313		Install new batteries	Video camera	15min	Kaori
5				Sound		
6	H-298		Assemble the rocket		60min	Naemura
7	H-238	(Tent at launching site)	Proporo ostallitos	TOIN Sat	15min	TOIN
8	H-223		Frepare satellites	KSE Sat	15min	KSE
9				Doors		
10	H-208		Visual check	Parachute	15min	Naemura
11				Satellites		
12				8sec - Open the doors for the satellites		
13	□ 102		Euroctional tost	9sec - Deploy TOIN Sat	20min	AT 1
14	H-195			11sec - Deploy KSE Sat	301111	ALL
15				13sec - Open the parachute door		
16	H-163		Assemble whole the system		15min	Naemura
17	H-148	(at the ramp)	Visual check		5min	Naemura
18				Install the rocket into the ramp		
19	H-143		Ramp compatibility	Check the I/F with the ramp	15min	Naemura
20				Remove the rocket from the ramp		

1 1		I						
21	H-128		Make sure the powe	5min	Kaori			
22	H-123		Everybody out from	the ramp	15min	Naemura		
23	H-108		Install Chamois to th	ne rocket	20min	PE		
24	H-88		Install UCK-06 in th	e ramp	10min	Naemura		
25	H-78		Install trigger wire to	Install trigger wire to the ramp				
26	H-68		Visual check	Visual check				
27	H-63		Insert ignator	15min	PE			
28	H-48		Lift tre ramp	15min	PE			
29	H-33		Turn on the power	5min	Naemura			
30	H-28		the red LED for Power		1min			
31	H-27		Check theLED	the green LED for Trigger SW	1min	Naemura		
32	H-26			the red LED for the parashute door	1min			
33	H-25		Go back to the gree	15min	Naemura			
34	H-10		Release the safety key (pyrotechique enginnners)		5min	PE		
35	H-05	Countdown	Start the countdowr	Start the countdown (10 to 0)				
36	H-00		Ignition and lift off		Omin	Naemura		

UCK-06 Rocket - Overall System

Exchange with Lycee Pierre Poivre of La Reunion Feb. 28, 2006 Creation Core Higashi Osaka

Osaka TOIN High School Rocket Research Club 2006 • 05 • 16

(Inspection by Mr. Christophe sicluna 2006 $\cdot\,05\cdot\,28$)

(Asahi.com, TOIN 2006/06/20)

(Installation of TOIN Sat)

(Mission Team & Supporters)

(Supporters of Space Club Kansai)

(Future project with Lycee Pierre Poivre, La Reunion)

Fusée UCK-06 Japon

Lancement

29 juillet 2006 17 :43 La Courtine - France

Club Espace de Kansai

Spécifications

Quasi-Satellites

Observation de la Terre

(TOIN-Sat et KSE-Sat)

Dimensions : 15cm x150cm

:12 Kg

: Mono-étage

Altitude : environ0.8Km

Mission :

Masse

Equipement :

Accéléromètre

Capteur de Vitesse

Capteurs d'Attitude

Vidéo et photo numérique

Type

Partenaires

UNICS Company Ltd. **OKURA Electronics Co.Ltd** Lycee TOIN SHUEI Co.Ltd KUNUGIZA Co.Ltd Osaka-Higashi Trust Bank Kitchen Kabocha Pro-USE Co.Ltd Sheriff Co.Ltd **DAM** Corporation Yoshino Kinzoku Co.Ltd Nissin Ind. Equip. Co.Ltd Kanaya-Autome Co.Ltd Wakasa Reserch Lab. Co.Ltd Science Sainte Rose **Planète Sciences** CNES Ambassade de France au Japon

© Club Espace de Kansai